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Abstract: We introduce and validate a beat-to-beat optical blood pressure (BP) estimation 
paradigm using only photoplethysmogram (PPG) signal from finger tips. The scheme 
determines subject-specific contribution to PPG signal and removes most of its influence by 
proper normalization. Key features such as amplitudes and phases of cardiac components 
were extracted by a fast Fourier transform and were used to train an artificial neural network, 
which was then used to estimate BP from PPG. Validation was done on 69 patients from the 
MIMIC II database plus 23 volunteers. All estimations showed a good correlation with the 
reference values. This method is fast and robust, and can potentially be used to perform pulse 
wave analysis in addition to BP estimation. 
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1. Introduction 

Suboptimal blood pressure (BP) is the number one risk factor for death throughout the world, 
but currently only one third of the hypertensive population has their BP under control [1]. 
One major reason is the lack of proper monitoring and feedback on the treatment. In patients 
with hypertension, rapid BP change can occur with physical activity, emotion and stress, it is 
thus crucial for hypertensive people to monitor their BP continuously and get timely medical 
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intervention, so that serious cardiovascular complications may be avoided [2,3]. Compared to 
conventional BP measured by auscultation, continuous BP is also considered a better preditor 
for cardiovascular events [4]. Unfortunately, to this day, the most widely used non-invasive 
sphygmomanometers, especially for home use, are still cuff-based, which interrupt regular 
blood flow, and are too cumbersome to wear for an extended period of time. Besides, this 
method only measures the systolic blood pressure (SBP) and diastolic blood pressure (DBP), 
with limited additional information [5]. 

Volume clamping is a new technology that measures BP noninvasively and continuously 
[6]. The idea is to keep the blood volume throughout the cardiac cycle constant, by rapidly 
inflating and deflating a tiny cuff around the finger. The applied cuff pressure is then used to 
estimate BP. This method is accurate and measures pressure waveforms, but the instrument is 
very expensive and difficult to wear. The finger cuff also limits the blood flow, and causes a 
sense of numbness if worn for a long time. 

Applanation tonometry can measure entire peripheral BP waveforms continuously and 
cufflessly [7]. With proper transfer functions, central blood pressures can be derived and 
more diagnostic information can be extracted [8,9]. However, this method still need to 
compress the radial artery and the devices are uncomfortable to wear. Besides, the artery must 
be flattened in a carefully controlled manner, to keep a perpendicular wall tension and 
constant deflection in the perpendicular direction [10], which is very difficult in practice and 
needs constant calibration. This method also has a potential bias related to the use of a 
generalized transfer function (GTF). 

In recent years, BP measurement with photoplethysmogram (PPG) has shown a lot of 
promise. Previous studies have reported an inverse correlation between BP and the pulse 
transit time (PTT) [11,12]. However, this method requires additional measurements of 
Electrocardiogram (ECG) or Ballistocardiography (BCG), and relies on very complicated 
arterial wave propagation models. Even with calibration, due to different physiological 
parameters, the dynamic nature of human muscle and hydrostatic change, PTT is not always a 
reliable marker of beat-to-beat blood pressure [13,14]. Thus, its usage is limited to track BP 
changes and for qualitative analysis, such as to tell whether the BP is at a level of concern. 

Optical BP estimation with only PPG signal, on the other hand, has a couple of practical 
advantages. First, PPG was shown to resemble the waveform of carotid pressure [15]. 
Secondly, a PPG device is inexpensive and the measurement is operator independent. This 
method was investigated in previous work [15–17]. For example, Kurylyak et al used 21 
freatures extracted from timing information of PPG waveforms to calculate SBP and DBP 
[16]. However, their work didn’t keep the fine details of PPG waveforms and the selection of 
parameters was mainly empirical. S. C. Millasseau et al reported a method to calculate 
normalized BP waveform from PPG, which was based on fast Fourier transforms (FFT) and 
generalized transfer function (GTF) [15]. They found that GTF could be applied to almost all 
subjects, even after nitroglycerin administration. However, it bore the same disadvantage of 
using GTF, and their main purpose was only to compare the shape of the waveform instead of 
fitting BP amplitude. John Allen et al used linear and neural network system identification 
techniques to correlate the BP and PPG waveforms [17]. They used a linear auto-regressive 
with exogenous variable (ARX) model to extract waveform features, and confirmed a strong 
tie between PPG and BP waveforms. However, this method requires a long initial calibration, 
and is prone to influences by age etc. Xiaorong Ding et al has proposed a hybrid method, that 
used both PPG intensity information and PTT to derive BP, showing improvement upon using 
PTT only [18]. However, they only incorporated the peak to peak amplitude information of 
the PPG waveforms and the measurement still required the use of ECG. 

Our aim is to provide a theoretical explanation of PPG waveforms, and design an 
algorithm to estimate BP accurately from PPG signal, so that a wearable, continuous, and 
cuffless device can be developed and hypertensive population can use this device to better 
manage their BP in all conditions. This paper is organized as follows: in Section 2, theoretical 
relation between PPG and BP is derived, in Section 3, data preprocessing steps and ANN 
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structures are described, Section 4 shows the experimental results and discusses future 
research directions, Section 5 gives a conclusion to this study. 

2. Theoretical background 

2.1 Theory of photoplethysmograph 

A photoplethysmogram measures blood volume change by illuminating the skin and 
calculating light absorption changes. Except for critically ill patients, the measurement site is 
typically on the fingers. The concept of modern PPG measurement originated from Aoyagi 
[19] and Yoshiya [20], who associated the time variant PPG signal with arterial blood volume 
change, and assumed that venous blood didn’t pulsate. 

The pulsating part of blood volume (commonly referred to as the AC part) is mainly 
caused by the pulsation of blood pressure over the cardiac cycle. It’s usually very small, and 
is superimposed onto a large non pulsating part (the DC part). Normalization is usually 
performed by dividing the AC part by the DC part, and the signal is linearly scaled to yield 
PPG waveforms within a certain amplitude range. 

 

Fig. 1. Schematic for instrument design, PPG signal decomposition and normalization. 

2.2 Arterial wall mechanics 

To derive a relation between PPG and BP signals, it’s crucial to understand the elastic 
property of blood vessels and how blood volume changes with blood pressure. Blood vessel 
wall is anisotropic in structure that has highly nonlinear elastic properties, thus a simple 
Hookean model doesn’t apply here [21]. Langewouters et al derived a relationship between 
BP in the human finger and the change in the arterial radius [22]. However, the expression 
was complicated, and has limited success in BP estimation applications [23]. In this paper, we 
will adopt a simpler formula to establish the relation between the two. 

The arterial wall stress is generally born by collagen, elastin and smooth muscle [21]. 
Their combined dynamic Young's modulus of elasticity (E) determines the stiffness of blood 
vessels. A number of in vitro studies have been carried out to estimate the relationship 
between E and the transmural pressure (P). One widely used empirical formula was given by 
Hughes et al [24] 

 0
PE E eγ=  (1) 

In Eq. (1), E0 and γ depend on the site of measurement and upon the particular animal. For 
example, γ measured in canine aorta is 0.017 ± 0.004 mm Hg−1 [24]. Bergel et al and Peterson 
et al [25,26] used different approaches to calculate E, which can be simplified approximately 
to 

 
2

2(1 )
r dP

E
h dr

σ= − × ×  (2) 

Here, σ is Poisson’s ratio and is typically treated as a constant. In some previous studies [25], 
σ was assumed to be 0.5, which treated E as incremental modulus. Since we only care about 
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the circumferential stress, E was chosen to represent the “tension-strain modulus” and σ was 
set to 0. Note that the choice of σ doesn’t affect the general conclusion drawn in the next 
section. h represents the thickness of the blood vessel wall, and r represents the mean radius 
of the blood vessel. 

2.3 Interpretation of PPG signal 

To simplify our model, we assume PPG signal correlates linearly with the blood volume (V) 
in the fingertip, and arterial blood vessels in the finger vascular bed have a uniform radius r, 
so that V in the measured area can be written as 

 2
0V C r Vπ= +  (3) 

Here C is a constant related to arterial blood vessel density, and V0 is related to microvascular 
and venous blood volume. Suppose V0 doesn’t pulsate, and combine Eq. (1)-(3), we can 
derive the following relation (see Appendix) 

 
2

0
2

( )

( )P

C E h
V

b e γ

γ π
−=

+
 (4) 

Here b is a large constant introduced by integration, and is assumed to be independent of E0, γ 
and h. V can be roughly approximated to the first order as 

 
2

0
2

( ) 2
(1 )PC E h

V e
bb

γγ π −≈ −  (5) 

The normalized PPG signal is then formulated as 

 
min

min

min

min

2( )

2

P P

norm P

V V e e
PPG

V b e

γ γ

γ

− −

−

− −= =
−

 (6) 

The time variant component of V is typically only a few percentage of the stationary 
component, which means PPGnorm is very small. To help visualize the pulse waveforms, a 
linear scaling function is typically used to amplify and shift the normalized PPG signal. This 
scaling function varies from manufacturer to manufacturer. In this study, we used ks as the 
scaling factor and Voff as the offset factor. Since b is very large, a modified scaling factor k is 
used to simplify the calculation. k is very important to proper normalization of PPG signal 
across patients, which will be described in section 3. 

 min( )P P
scaled s norm off offPPG k PPG V k e e Vγ γ− −= × + ≈ − +  (7) 

2.4 Advantages and limitations 

Before normalization, PPG signal is heavily influenced by blood vessel elastic properties E 
and blood volume V etc, which have large person to person variation. It’s difficult to derive a 
general rule that applies to all people. After normalization, PPG signals taken from different 
subjects become comparable, assuming similar vascular composition. Normalization also 
ameliorated the effect of non-ideal contact between sensors and the finger, such as off-center 
placement, since DC component and AC component change almost proportionally. γ may still 
have a small variation among different population, but the influence is comparatively small. 

However, because of the assumptions used in our derivation, there are limitations to this 
method. One important assumption is that the blood constituent ratio will remain constant 
during the entire course of meansurement, especially those having high absorption abilities at 
NIR wavelength such as hemoglobin, which is true for most people including hypertensive 
patients. But in certain cases where a patient undergoes hemodynamic fluctuation, such as 
serious edema or blood clot, this method could fail and needs to be used with discretion. 
Secondly, arterial vascular structure in the finger is far from uniform, which gives a 
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distribution of vessel diameters. We only did approximation to the second order, which may 
introduce considerable error when more accurate results are desired. Also, different vascular 
composition causes different background absorption ratio, which leads to a variation of b. 
Thus the BP fitting error will be relatively large if only amplitude information is used. That’s 
why we also have to combine with shape information of the waveforms, which is indirectly 
influenced by the BP level [14,21], to improve BP fitting accuracy. Thirdly, we haven’t 
considered the light absorption from nonvascular soft tissue, pulsation from venous and the 
mild pressure exerted by the PPG sensor. Last but not the least, our theory is based on Eqs. 
(1)-(2), which describe the property of arota and its major branches fairly well, but may lose 
its accuracy when applied to blood vessels in finger tips. But fortunately, thanks to the use of 
neural network as opposed to straight forward regression, some of these adverse effects can 
be overcome quite effectively in practice with the extensive training of the network. 

3. Materials and method 

3.1 Data source 

In this study, data from freely distributed MIMIC II (Multiparameter Intelligent Monitoring in 
Intensive Care) database was used. MIMIC II is a collection of multi-parameter recordings of 
more than 15000 ICU patients, and includes both physiologic signals and vital signs [27,28]. 
We examined 85 patients with complete ECG, BP and PPG readings, simultaneously taken 
with a sampling rate of 125Hz. For those patients, BP was continuously taken by an invasive 
method at the wrist, and PPG was taken at the finger with a pulse oximeter. Data length varies 
from patient to patient, depending on their ICU stay time. For our analysis, 16 patients were 
excluded for poor data quality (N = 7), pulsus bisferiens (N = 7) or unstable BP-PPG 
correlation (N = 2). In the end, more than 170,000 heartbeats from 69 patients were used to 
capture the relationship between PPG and BP. 

Data processing steps are as follows: 

1. PPG and BP data were aligned to compensate for their phase lag. 

2. Quality data were selected based on established criteria. 

3. Proper normalization was performed to get rid of the variance in k factor 

4. Waveform data were examined in frequency domain, and key features were extracted 
Note that PPG recordings in MIMIC II came from commercial pulse oximeters, which had 

been amplified and highly filtered. Data from other resources should be adjusted accordingly 
to match the results from this paper. 

3.2 Data alignment 

BP and PPG data from MIMIC II are not perfectly aligned. To account for phase lag between 
BP signal and PPG signal, a cross correlation function g(Δt) was calculated to precisely align 
those two waveforms. 

 
( ) ( )

( )
( ) ( )

BP t PPG t t
g t

BP t PPG t

< + Δ >Δ =
< >

 (8) 

Here g(Δt) represents a time averaged value of the cross correlation function, and Δt is the 
phase lag between BP and PPG. The most accurate Δt corresponds to the biggest g(Δt). Δt is 
generally bigger than 0 and smaller than the duration of a single pulse, as shown in Fig. 2. 
Our analysis shows a mean Δt of 0.28s and a standard deviation of 0.04s. Δt may be 
influenced by drug use, body temperature change and position change etc, so it should be 
recalibrated regularly. 
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Fig. 2. g(Δt) v.s. time for two patients. Phase lag varies from person to person. 

3.3 Initial data selection criteria 

Fidelity of BP and PPG data is critical to finding the right model. Abnormal or corrupted data 
may cause undesirable results for future analysis. Since data from MIMIC II database is from 
real patients in critical condition, sensors may fall off, and good contacts may be lost 
occasionally. We need to find a way to filter the raw data, and use the data with less artifact 
and good internal connection. 

Various methods have been proposed to evaluate the quality of BP data. For example, Sun 
et al [29] used a signal abnormality index (SAI) to assess BP quality. We modified their 
method for the purpose of deriving a correct model between BP and PPG. A linear 
Savitzky—Golay smoothing filter was firstly applied to SBP and DBP signal, and any data 
two standard deviation away from smoothed value were considered too noisy and discarded. 
In this preliminary study, data with SBP higher than 180mmHg were too few to generate a 
correct fitting. So they were not used either. The initial selection rules are as follows (Table 
1). 

Table 1. BP data exclusion criteria 

Feature SBP DBP ΔSBP ΔDBP SBP-DBP T 
Abnormality 
criteria 

>180mmHg 
or 
<80mmHg 

<20mmHg > 2*std_sbp >2*std_dbp <20mmHg <0.3s 
or >3s 

*SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure; ΔSBP = |SBP -SBP(smoothed)|; 
ΔDBP = |DBP -DBP(smoothed)|; T: Pulse duration time; std_sbp = standard deviation of ΔSBP; std_dbp = 
standard deviation of ΔDBP 

PPG signals tend to be much noisier. To evaluate their quality, Silva et al [30] used a 
multichannel adaptive filter (MCAF) method to give a Signal Quality Index (SQI) for PPG 
signal. The algorithm was originally designed to predict missing data and relied on 
measurement history. Li and Clifford [31] compared PPG pulses with known good ones with 
dynamic time warping technique, and derived their own quality index. This study focused on 
PPG signals only and worked without other inputs. Since we have simultaneous BP data, 
which are generally very clean, we used a simple yet effective method similar to Chen et al 
[9]. They reported a correlation coefficient of 0.9 between tonometric radial and central aortic 
pressures. Sudden loss of correlation indicated error in tonometric measurement. Similarly, in 
our situation, the hypothesis is that good PPG signal should highly correlate with BP. A linear 
regression was performed between each corresponding PPG and BP pulses. The threshold 
value of coefficient of determination (R2) was empirically chosen to be 0.8. 
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Fig. 3. Example of measured radial pressure wave versus simultaneously recorded PPG wave 
(a) A clinical abnormal PPG waveform (b) Correlation between BP and abnormal PPG 
waveform (c) A clinical good PPG waveform (d) Correlation between BP and good PPG 
waveform. 

We also screened the data for pulsus bisferiens, which means a double peak per cardiac 
cycle. This may indicates aortic insufficiency in association with diseases like aortic stenosis 
[32]. This type of data was excluded to keep our model simple, but will be implemented in 
the future work. 

3.4 Normalization 

Previous research found that the diameter-pressure curve was not significantly different 
between hypertensive patients and their respective controls [33], which implies that in Eq. (7), 
γ stays relatively constant. However, the scaling factor k varies from patient to patient, which 
makes it very difficult to derive a general correlation between PPG and BP, as shown in Fig. 
4. 

 

Fig. 4. Relation between PPG and radial BP. 
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It’s found that BP measured at the wrist was closely related to digital BP measured at the 
finger tip [6]. In this study, we assumed γ to be 0.017, and normalized k across all patients 
using the relationship between PPGscaled and radial BP. With a least square error method, we 
found that k varied from 0.50 to 3.26, with a mean value of 1.86 and a standard deviation of 
0.5 (Npatient = 71). The relationship between PPGscaled and minP Pe eγ γ− −− deviates from linearity 
when P becomes very high or closer to Pmin, which may have been caused by the loss of 
accuracy of Eqs. (1)-(2), or the inherent difference between radial BP and digital BP. 

Note that we are using PPG data from commercial pulse oximeters, and estimating BP is 
considered “off-label” use. For future studies, auto-scaling function should be disabled to 
avoid errors introduced by k calibration. In our study, evaluation without auto-scaling was 
also carried out and the results were presented in section 4. 

3.5 Feature extraction from PPG 

Systolic amplitude of PPG signal has been found to have a good correlation with local 
vascular distensibility over a wide range [34]. In our study, a fast fourier transform was used 
to extract both amplitude and phase features from the waveforms. This method is more stable 
than time domain feature extraction because it does not require identification of the exact 
location of certain characteristic points on the waveform, and can analyze more than one 
cardiac cycle at a time. For a beat to beat BP estimation, one frame was defined to contain a 
complete cardiac cycle with 10% of the previous cycle and 5% of the following cycle, which 
was then padded with zero to a length of 150 data points per frame. 

This feature extraction method has certain limitations. When BP changes very rapidly, 
features will be influenced by adjacent beats, which will introduce considerable errors for a 
beat-to-beat estimation. 

3.6 Architecture of the ANN 

Artificial neural networks are a family of models inspired by biological neural networks and 
can be used to estimate complex functions that are highly nonlinear. In practice, a multilayer 
feed-forward back propagation ANN with one hidden layer is enough to fit a continuous 
function. The inputs for our ANN are amplitudes and phases of the fourier components, as 
shown in Fig. 5. A Levenberg-Marquardt algorithm was used to train the ANN. 70% of data 
were used for training, 15% for validation and 15% for test. The structure of ANN is as 
follows: 

 

Fig. 5. ANN architecture for SBP and DBP estimation. 

To check the validity of our method, we firstly compared the outputs from ANN with 
invasively measured BP, which was considered the gold standard. We also implemented this 
algorithm to a high resolution pulse oximeter and compared the outputs with a commercial 
cuff sphygmomanometer, to see if those two methods are interchangeable. 
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4. Experiment results 

4.1 BP fitting (MIMIC II) 

To validate the proposed method, we firstly investigated how correlated the spectral 
components of PPG and BP are. As shown in Fig. 6(a)-6(b), amplitude components of PPG 
and BP are highly correlated for all frequencies. The correlation of their phases is good at low 
frequencies, but becomes worse at higher frequencies, as shown in Fig. 6(c)-6(d). 

 

Fig. 6. Correlation between spectral components of BP and PPG (a)-(b) amplitude correlation 
(c)-(d) phase correlation. 

From the above analysis, it’s plausible to derive SBP and DBP from PPG signal only. 
However, with so much variation, it’s difficult to reconstruct BP waveform precisely with 
only a linear regression method. 

ANN is often used to estimate complex nonlinear functions. Previous study found a cut-
off frequency of 8-11Hz was ideal for BP waveform reconstruction [9,15]. In our case, a 
fitting net with a hidden layer of 35 neurons and cut off frequency of 10.8Hz gives a stable 
and accurate fitting of SBP and DBP simultaneously, as shown in Fig. 7. More neurons in the 
hidden layer provide slight improvement (~0.2mmHg), but they also tend to over-fit the data, 
and introduce instability. 
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Fig. 7. Performance of the ANN (root-mean-square error) vs. number of hidden neurons and 
cutoff frequency. 

Accuracy of BP estimation requires a steady correlation of BP and PPG. If cardiac loading 
or medical intervention changes the correlation drastically during the measurement, fitting 
accuracy will be lowered. In our study, patients with huge fluctuation of the correlation 
function were not used to train the general ANN. 

To identify those outliers, we firstly trained individual ANN for each patient separately 
(Npatient = 71). Most of the fitting errors were within the American National Standards of the 
Association for the Advancement of Medical Instrumentation (AAMI), where the maximal 
accepted error is 5 ± 8 mmHg, as shown in Fig. 8. 2 out of 71 patients were excluded from 
general ANN training due to lack of steady BP and PPG correlation. 

 

Fig. 8. Individual fitting error distribution. 

In the end, we trained the general ANN with 69 patient data, which includes 175,477 
waveforms. The beat to beat fitting error was 0.06 ± 7.08mmHg for SBP, and 0.01 ± 
4.66mmHg for DBP, which also fulfills the British Hypertension Society (BHS) protocol and 
ranks grade A/A [35], as shown in Table 2. The fitting results are illustrated in Fig. 9. 

Table 2. BP estimation accuracy. Grades represent the cumulative percentage of readings 
falling within 5 mm Hg, 10 mm Hg, and 15 mm Hg of the standard. 

Absolute difference between standard and our method(%)
 ≤5 ≤10 ≤15 
SBP 61 86 95
DBP 77 95 99
Grade A 60 85 95
Grade B 50 75 90
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Fig. 9. General ANN fitting for all data points and BP data distribution. 

If we don’t care about the beat to beat BP value, and instead we average BP for several 
seconds, fitting error can be further reduced. For example, if five adjacent waveforms are 
averaged, the fitting error can be reduced to 0.06 ± 5.57mmHg for SBP, and 0.01 ± 
3.69mmHg for DBP, as shown in Fig. 10. 

 

Fig. 10. Error reduction with averaging. 

Considering that those patients were under intensive care, and medical intervention might 
be administered, this result is very promising. 

However, this method still has limitations and needs to be improved. For example, A 
model more accurate than FFT is desirable to capture the essential waveform of PPG. Data 
sampling and preprocessing method can be further optimized. ANN structure should be fine 
tuned to firstly classify patients and reduce the number of outliers. Those work will be 
implemented in future studies. 

4.2 Test on volunteers 

To see if our scheme is robust, we did additional testing on healthy volunteers. In this study 
23 subjects were recuited, with age ranging from 26 to 34. Among them, 18 were male and 5 
were female. A PPG evaluation module (AFE4490, Texas Instruments) with high resolution 
pulse waveform output was firstly used to obtain PPG signals, with the detector centered on 
the palmar side of the index finger. The sampling frequency was 500Hz. The unscaled and 
unfiltered outputs were used to keep k constant, as shown in Eq. (7). Subjects were allowed to 
rest for at least 5 minutes before BP measurement by an Omron HEM-7051 digital automatic 
upper-arm blood pressure monitor. All the measurements were done under resting conditions. 
The quality of PPG waveforms was visually inspected, and the BP measurement was later 
verified by another upper arm automatic sphygmomanometer (Microlife BP3GX1-5X). For 
each subject, PPG pulses in 8 seconds were averaged to estimate SBP and DBP. Note that this 
comparison is meant to prove the equivalency of the two methods, thus cannot result in an 
indication of the accuracy of either device. Our result showed a difference of −1.67 ± 
2.46mmHg for SBP and −1.29 ± 1.71mmHg for DBP. T-test of the two measurements 
showed no significant difference (p<0.01), indicating a high correlation. We also did Bland–
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Altman analysis to see if these two methods are interchangeable. The limit of agreement was 
shown to be 4.1mmHg, as in Fig. 11, which is acceptable in clinical settings. 

 

Fig. 11. Bland–Altman analysis between PPG-based BP estimation and the cuff 
sphygmomanometer. 

5. Discussion and conclusion 

PPG is a very promising technology due to its wearablity, non-invasiveness and versatility, 
which not only provides information about tissue oxygenation and heart rate, but also offers 
blood pressure information and has potential for early screening of vascular diseases [36–39]. 
However, PPG signal analysis is also complicated due to the influences from the 
cardiovascular, respiratory, and autonomic systems. A full understanding of its morphology 
and underlying physiology is still lacking. 

We have investigated the intrinsic connection between BP and PPG, and derived a simple 
mathematical formula to describe their relationship, which is straight forward and based on 
fewer assumptions than methods using PTT. FFT based feature extraction uses a few key 
parameters to preserve the entire amplitude and shape information of the waveform and 
makes the analysis much easier. We have also utilized the power of ANN to improve the 
fitting accuracy of BP. With proper data processing, normalization and training, this method 
performs well, without the need of complicated and repeated calibration for each individual. 
It also provides much richer information about the patients’ cardiovascular health by looking 
into the spectral components of BP and PPG. 

In this work, we have used more than 170,000 waveforms from 69 patients to train the 
general ANN, which is a much bigger population than those used in previous studies [15–18]. 
We have shown our method is robust and accurate over a fairly large number of subjects 
tested. But this is by no means a thorough training and test. Distribution of BP in real world 
may be different from the training samples we used. For example, there are more than 15,000 
patients available in the MIMIC II database and we only randomly selected a few dozens. 
Ideally we should include data from both healthy and unhealthy subjects with a wider range 
of BP readings, but analyzing all of them will need more sophisticated computational tool. 

Data quality is important to the initial training and the later usage of the artificial neural 
network in this method. For the MIMIC II data sets, we selected the good PPG waveform 
sections based on the BP information we had from the same database, which enabled we to 
easily and reliably obtain clean BP and PPG signals for ANN training and validation. For the 
volunteer experiment, we however had to rely on the PPG signal itself to determine and 
discard any PPG segments that were deemed bad or unusable. There, a rudimental method of 
comparing the signal to the mean signal plus and minus two standard deviations was used. 
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For future work, we will focus on developing a more robust and universal data selection 
scheme to assess the quality of PPG signal and to filter out the bad waveforms from the good 
ones in realtime. Also, both digital BP and radial BP should be measured to establish a more 
accurate relationship between BP and PPG. We should also try to classify patients with 
different medical conditions before doing BP estimation. Raw PPG data will be used instead 
of heavily processed data from commercial pulse oximeters, to identify patients with different 
PPG-BP responses. For example, morphological characters and low frequency drifting of 
PPG waveforms may be used to label certain diseases such as atrial fibrillation, stiff arteries, 
and hypovolemia. To do this, new technologies such as pattern recognition and recurrent 
ANN may help. 

Appendix 

Here, we derive the expressions for blood volume (V) as a function of blood pressure (P). 
Derivation is firstly done on both sides of Eq. (3). 

 2dV C rdrπ=  (A1) 

Combine Eqs. (1)-(3), we can derive the following relation 
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Move V3/2 to the left side of Eq. (10), we have a relation between V and P. 
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Constant b is introduced in the expression as a result of the integration. 
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Finally, we acquired (4), as shown in section 2.3 
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